
Bidirectional processing I: 
feedforward & feedback networks for 

recognition

Focus today on feedforward architectures

recognition

• The computational problems of scalability and 
flexibility 

• Feedforward models 

• Feedback models

A. B.

D.

C.
Inferences about the 
image involve various 
inferences:

• types of features & 
attributes (shapes, 
material)

• recognition over 
levels of 
abstraction (parts, 
objects, actions, 
scenes)

• spatial scales

• relationships

computational problems Descriptions are inferences of object properties and relationships
— i.e. causes of image intensities, not of image intensity patterns

A crucial assumption is that these inferences are based on 
deep, generative knowledge of how virtually any natural 
image could be produced



computational problems

vision is concerned with causes of image intensity patterns, but the 
causes of behavioral relevance are encrypted and confounded 

many hypotheses about cause can be consistent with the same 
local image evidence 

local variations  in image evidence can be consistent with the same 
cause 

accurate perceptual decisions resolve these ambiguities by 
combining lots of image evidence with built-in knowledge

Need to model uncertainty

computational problems

Solving toy (low-dimensional) problems rarely 
scales up to deal with the complexity of natural 
images. 

In object recognition, humans have the capacity to 
quickly deal with an enormous space of possible 
objects (30 to 300K) as they appear in different 
contexts in natural images for different tasks.

Need to solve scalability

computational problems

Vision stimulates and support answers to a 
limitless range of questions. Human vision doesn’t 
just recognize, it interprets scenes. 

e.g. description of the fox

Need to solve task flexibility

“One can see that there is an animal, a fox--in fact a baby fox. It is emerging from behind the base of a tree not too far from the 
viewer, is heading right, high-stepping through short grass, and probably moving rather quickly. Its body fur is fluffy, reddish-brown, 
relatively light in color, but with some variation. It has darker colored front legs and a dark patch above the mouth. Most of the body 
hairs flow from front to back...and what a cute smile, like a dolphin.”

A little history of computational 
pattern/object recognition

McCulloch and Pitts 
threshold logic units

1940s

template models, e.g. SDT



Rosenblatt, F. 'The Perceptron, a Perceiving and Recognizing Automaton', Cornell Aeronautical Laboratory Report No. 
85-460-1 (1957); 

Rosenblatt, F. Principles of Neurodynamics (Washington, D.C.: Spartan, 1962).

mark 1

feedback too
random connections.  
perceptron learning algorithm enabled it to 
to learn to classify

1950s

Rosenblatt’s perceptron

Rosenblatt, F. 'The Perceptron, a Perceiving and Recognizing Automaton', Cornell Aeronautical Laboratory Report No. 
85-460-1 (1957); 

Rosenblatt, F. Principles of Neurodynamics (Washington, D.C.: Spartan, 1962).

mark 1

adjust weights, w, to find separating line 
limited to linearly separable classification

Threshold-logic and 
the perceptron 
learning rule

support vector machines

https://en.wikipedia.org/wiki/Kernel_method#/media/File:Kernel_Machine.png

1963 — linear 
1992 — non-linear kernels

solving the supervised learning problem: 

error-back propagation for learning weights

1980s through 1990s 
getting multi-layer perceptrons to work

Rumelhart, David E.; Hinton, Geoffrey E.; Williams, Ronald J. (8 October 1986). "Learning representations by back-propagating errors". 
Nature 323 (6088): 533–536  

LeCun,Y,Bottou,L,Bengio,Y,andHaffner,P.Gradient-basedlearningappliedtodocumentrecognition. Proceedings of the IEEE, 86(11):2278–
2324, November 1998. 

***** 
Paul J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. PhD thesis, Harvard University, 
1974 
Bryson, A.E.; W.F. Denham; S.E. Dreyfus. Optimal programming problems with inequality constraints. I: Necessary conditions for extremal 
solutions. AIAA J. 1, 11 (1963) 2544-2550 



• theoretical understanding of what networks were doing 
• development of cost (energy) function methods for finding 
solutions and learning

recurrent networks 
Hopfield network 
Boltzmann machines

1980s

Ackley, D. H., Hinton, G. E., & Sejnowski, T. J. (1985). A learning algorithm for Boltzmann machines. Cognitive Science, 9(1), 147–169.

The need for an “architecture” for vision

to manage local uncertainty

and the complexities of real-world images

O. G. Selfridge. "Pandemonium: A paradigm for learning." In D. V. 
Blake and A. M. Uttley, editors, Proceedings of the Symposium on 
Mechanisation of Thought Processes, pages 511–529, London, 1959.

Pandemonium 1959

• parallel processing, 
• learning 
• hill-climbing cost functions

Fukushima 1988

Fukushima, K. (1988). Neocognitron - a Hierarchical Neural Network Capable of Visual-Pattern Recognition. Neural Networks, 1(2), 119–130.

supervised and unsupervised learning



primate visual hierarchical neuroarchitecture 

1978….1991

Zeki, S. M. (1978). Functional specialisation in the visual cortex of the rhesus 
monkey. Nature, 274(5670), 423–428. 

Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing 
in the primate cerebral cortex. Cerebral Cortex, 1(1), 1–47.

V1 V2

MT

V4

edges? surfaces?

shape? 
color?

motion?

feedforward

Inferior 
temporal

dorsal

ventral

Hegde and Felleman, 2007

Hierarchical models 
of object recognition

bread and butter of ventral 
stream modeling

Hierarchical models 
for feature extraction for recognition

Local features progressively grouped into more 
structured representations 

• edges => contours => fragments => parts => 
objects 

Selectivity/invariance trade-off 

• Increased selectivity for object/pattern type 

• Decreased sensitivity to view-dependent variations 
of translation, scale and illumination



ANDs & ORs 
Recognize the letter “t”

i=1 i= 2 i=3 i=1 i= 2 i=3 i=1 i= 2 i=3

i=9

“t” is represented by the conjunction 
of a vertical and horizontal bar: AND

OR OR ...

= t

which can occur at any one of many locations i

“t”:  h1 && v1  || h2 && v2  || h3 && v3...

Riesenhuber & Poggio model 

• combine the properties of simple- and 
complex-like cells with hierarchical 
organization to achieve invariance

Poggio, T. (2011). The Computational Magic of the Ventral Stream: Towards a Theory. Nature Precedings.

simple and complex cells as AND- and OR-
like operations 

 contributing towards an end-goal of invariant 
recognition

two main classes of V1 cells*

• Simple cells 
• detect conjunctions of inputs  

• similar to a logical AND 
• e.g. of similar pixels to form an edge template 
• “phase sensitive” 

• Complex cells 
• detect disjunctions of inputs 

• similar to a logical OR 
• e.g. any of several similar oriented edges within a 

region of space will fire cell 
• “phase insensitive”

*The distinction isn’t categorical--i.e. a range of phase sensitivities. And 
there other types of cells, e.g. end-stopped. See Mechler, F., & Ringach, 

D. L. (2002). On the classification of simple and complex cells. Vision 
Research, 42(8), 1017–1033.
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We related our crowd-sourced measurements to our previous 
results in two ways. First, we confirmed for the original 15 texture 
families (Fig. 5) that perceptual sensitivity measured in the crowd was 
reliably correlated with, albeit lower than, sensitivity measured in the 
laboratory (r = 0.92, P < 0.0001, Fig. 6b). Second, we used the 494 new 
texture families to link the crowd-sourced sensitivity estimates back 
to physiological responses. We selected 20 texture families spanning 
a range of crowd-estimated sensitivities, emphasizing the extremes 
(Fig. 6c). We used images from these families as stimuli in further 
single-unit and fMRI experiments. Both the single-unit modulation in 
V2 (r = 0.74, P < 0.001, 16 cells) and fMRI modulation in V2 (r = 0.77,  
P < 0.0001, 2 subjects) were significantly correlated with crowd-estimated 
sensitivity (Fig. 6d,e), confirming with new stimuli the relationship 
found in our earlier experiments (Fig. 5). In V1, single-unit modulation  
showed no evidence for a correlation with sensitivity (r = –0.25,  
P = 0.33, 11 cells). fMRI modulation in V1 to these new stimuli 
revealed a significant correlation (r = 0.49, P < 0.05). This was weaker 
than the correlation found for V2 and similar to our results using the 
original 15 texture families (Fig. 5e).

The crowd-sourced psychophysical data for the complete ensemble 
of texture families allowed us to identify which statistical depend-
encies of the images explained diversity in perceptual sensitivity 
to naturalistic structure. Recall that our textures were synthesized 

to match correlations among V1-like responses—both linear filter 
responses and energies—at different orientations, positions and 
scales (Fig. 7a,b). Through a combination of principal components 
analysis and multiple linear regression (see Online Methods), we 
used these correlations, along with spectral and marginal statistics, 
to predict more than half of the variance in perceptual sensitiv-
ity (Fig. 7c, R2 = 66%). To ensure that results were not a result of 
overfitting, we confirmed that accuracy was still high (R2 = 60%) 
with tenfold cross-validation. To identify the relative importance of 
different synthesis parameters, we decomposed the total R2 using 
the averaging-over-orderings technique (see Online Methods)28. 
The cross-scale correlations among the energy filter responses 
accounted for the largest share; second and third most impor-
tant were the cross-position and cross-orientation energy-filter  
correlations (Fig. 7d). Correlations among linear filter responses were 
less important. Spectral properties had a small amount of predictive 
power, but this likely reflected how spectra control visibility; for 
example, insensitivity to high spatial frequencies. The contribution 
of marginal statistics (skewness and kurtosis) was negligible, indicat-
ing that perceptual sensitivity is driven by the higher-order correla-
tions rather than basic image properties. Together, these results link 
perceptual sensitivity—and, we infer, neuronal sensitivity in V2—to 
the particular kinds of higher-order statistical dependencies found 
in our naturalistic textures.

DISCUSSION
We have found that naturalistic texture stimuli modulate the responses 
of neurons in area V2, while having only a minimal effect on neurons 
in area V1. These modulations were similar and substantial in both 
anesthetized macaques and awake humans. The diversity of modula-
tion across different texture families predicted the perceptual sali-
ence of their naturalistic structure. We capitalized on this diversity 
to reveal the importance to V2 activity of correlations across scale 
and, to a lesser extent, across position and orientation. The combina-
tion of human and monkey physiology with psychophysics provided 
mutually reinforcing evidence that V2 has a direct functional role in 
representing naturalistic structures.

Previous studies have identified specialized response properties in 
subpopulations of V2 neurons8,9,13, but the differences between V2 
and V1 were usually small3,5–7,10. Some of these may reflect special 
cases of the properties identified here; for example, tuning for angles 
could arise from sensitivity to cross-orientation correlations. The 
attribute that has most robustly distinguished V2 from V1 is ‘border 
ownership’11, which may also depend on the receptive field surround 
in V2 (refs. 18,29). Border ownership signaling, however, may rely 
on attentional feedback30,31, whereas the response pattern we have 
discovered probably does not, as it is evident in both awake humans 
with diverted attention and anesthetized macaques.

Our fMRI measurements robustly differentiated human V2 from 
V1. However, unlike in our single-unit recordings, there was a weak 
but significant correlation between fMRI measurements in V1 and 
perceptual sensitivity (Figs. 5e and 6e). These V1 signals may reflect 
the influence of modulatory feedback23. Such an influence was 
hinted at by the late component of modulation in the V1 single-unit 
response time course (Fig. 2c) and could be more readily evident 
with fMRI32. Establishing a more direct relationship would require 
further study of the late V1 single-unit response, by recording from 
more neurons and thus more reliably measuring the weak signal or 
by means of techniques capable of isolating feedback signals33.

We compared responses to naturalistic texture stimuli with 
responses to spectrally matched noise images, similar to the globally 

Figure 7 Using higher-order correlations to predict perceptual sensitivity. 
(a) Cross-scale, cross-position and cross-orientation correlations are 
computed by taking products of localized V1-like filter responses. Each 
circle represents an image location. Filters at each location are tuned to 
orientation and frequency, and compute either linear or energy responses 
(see b). (b) Linear filters are sensitive to phase, akin to V1 simple cells; 
energy filters compute the square root of the sum of squared responses of 
two phase-shifted filters (in quadrature pair) and are thus insensitive to 
phase, akin to V1 complex cells42. For both filter types, products (as in a)  
are averaged across spatial locations to yield correlations. (c) We used 
multiple linear regression to predict perceptual sensitivity to naturalistic 
textures based on higher-order correlations and other image statistics 
used in texture synthesis. Each data point corresponds to a texture family; 
black dots indicate all texture families used in physiological experiments 
(from Figs. 2e, 5d,e and 6d,e). Black dashed line is the line of equality. 
(d) Wedges indicate the fractional R2 assigned to each group of texture 
synthesis parameters from the regression analysis. See refs. 19,22 for 
example images showing the role of some of these parameters in  
texture synthesis.
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We related our crowd-sourced measurements to our previous 
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families (Fig. 5) that perceptual sensitivity measured in the crowd was 
reliably correlated with, albeit lower than, sensitivity measured in the 
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showed no evidence for a correlation with sensitivity (r = –0.25,  
P = 0.33, 11 cells). fMRI modulation in V1 to these new stimuli 
revealed a significant correlation (r = 0.49, P < 0.05). This was weaker 
than the correlation found for V2 and similar to our results using the 
original 15 texture families (Fig. 5e).

The crowd-sourced psychophysical data for the complete ensemble 
of texture families allowed us to identify which statistical depend-
encies of the images explained diversity in perceptual sensitivity 
to naturalistic structure. Recall that our textures were synthesized 

to match correlations among V1-like responses—both linear filter 
responses and energies—at different orientations, positions and 
scales (Fig. 7a,b). Through a combination of principal components 
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used these correlations, along with spectral and marginal statistics, 
to predict more than half of the variance in perceptual sensitiv-
ity (Fig. 7c, R2 = 66%). To ensure that results were not a result of 
overfitting, we confirmed that accuracy was still high (R2 = 60%) 
with tenfold cross-validation. To identify the relative importance of 
different synthesis parameters, we decomposed the total R2 using 
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discovered probably does not, as it is evident in both awake humans 
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the influence of modulatory feedback23. Such an influence was 
hinted at by the late component of modulation in the V1 single-unit 
response time course (Fig. 2c) and could be more readily evident 
with fMRI32. Establishing a more direct relationship would require 
further study of the late V1 single-unit response, by recording from 
more neurons and thus more reliably measuring the weak signal or 
by means of techniques capable of isolating feedback signals33.
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Figure 7 Using higher-order correlations to predict perceptual sensitivity. 
(a) Cross-scale, cross-position and cross-orientation correlations are 
computed by taking products of localized V1-like filter responses. Each 
circle represents an image location. Filters at each location are tuned to 
orientation and frequency, and compute either linear or energy responses 
(see b). (b) Linear filters are sensitive to phase, akin to V1 simple cells; 
energy filters compute the square root of the sum of squared responses of 
two phase-shifted filters (in quadrature pair) and are thus insensitive to 
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(d) Wedges indicate the fractional R2 assigned to each group of texture 
synthesis parameters from the regression analysis. See refs. 19,22 for 
example images showing the role of some of these parameters in  
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Riesenhuber & Poggio, 1999

S - simple cell like

C - complex cell like



relation to “deep 
convolutional networks”

spatial filtering

threshold non-linearity

subsampling via “pooling”

spatial filtering

threshold non-linearity

subsampling via “pooling”

spatial filtering

threshold non-linearity

subsampling via “pooling”
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filter weights learned

Filter/feature hierarchies 
can be “learned” from 

natural image input

supervised

Deep convolutional network learning 
What’s new since the 1980s?

large labelled image datasets 
faster computations—GPUs

What determines feature hierarchies?
Grouping to form more abstract features, given image regularities that support tasks  

— “hand - wire” based on analysis of computation and neural models 

• e.g. Riesenhuber and Poggio, … 

— unsupervised learning based on based on successive discovery of image regularities (Barlow) 

• detecting “suspicious coincidences”:  

- Is p(feature A, feature B) >> p(feature A) p(feature B) 

- if so, recode to remove dependence. E.g. contingent adaptation example 

- advantage of general features. but perhaps more useful at lower levels of the hierarchy 

— supervised learning 

• — “20 questions” approach (Ephstein et al.) 

- find diagnostic features that distinguish the categories for the most important tasks to 
determine the top level 

- repeat at a lower level of abstract to find sub-features that distinguish the diagnostic 
features 

- …and so forth 

• deep convolutional networks

A.

Zhu, L., Chen, Y., Torralba, A., Freeman, W., & Yuille, A. (2011). 
Part and appearance sharing: Recursive compositional 

models for multi-view multi-object detection. IEEE Computer 
Society Conference on Computer Vision and Pattern 

Recognition, 1919–1926.

Zeiler, M., Taylor, G., & Fergus, R. (2011). Adaptive 
deconvolutional networks for mid and high level feature 
learning. Computer Vision (ICCV), 2011 IEEE International 

Conference on, 2018– 2025.

“Deep belief” networks 
learning constrained by generative 

prediction

“Compositional” constraints: 
suspicious coincidences 

part-sharing

ImplicitExplicit, “symbolic”

Filter/feature hierarchies 
can be “learned” from 

natural image inputunsupervised



What determines feature hierarchies? 
An example based on task requirements

Need features for rapid, accurate generalization, given 
a visual task requirement.

Find features of “intermediate complexity”, i.e. 
image “fragments”, that are most informative for 

category distinctions 

Ullman, S., Vidal-Naquet, M., & Sali, E. (2002). Visual features of intermediate 
complexity and their use in classification. Nature Neuroscience

Object recognition in the context of a task 
requirement

What do 
these 
scenes 
have in 
common?

“Up” curbs-- requiring a step up Distinguish 
from non “up 

curbs”

...that do not 
require a step  
up and require 
different actions



Learning based on informative 
fragments for the task

Evgeniy Bart

Algorithm finds 
fragments that maximize 
mutual information 

Detect “up curbs” from 
an approach angle that 
requires a step. 

View-specific 

Works well 

Experimentally tractable

Do people learn to use fragments of 
predicted “intermediate complexity”

Virtual morphogenesis
Brady, M. J., & Kersten, D. (2003). 
Bootstrapped learning of novel objects. 
Journal of Vision, 3(6), 413–422.

Generating naturalistic object classes
Virtual Phylogenesis

Hegde, J., Bart, E., & Kersten, D. (2008). Fragment-Based Learning of Visual Object 
Categories. Curr Biol. 18, 597-601

Training

A B

Member of category A or B?



Results
Features of intermediate complexity (local image 
patches) predicted human observers ability to classify 
new objects from learned categories

A

Hegde, J., Bart, E., & Kersten, D. (2008). Fragment-Based Learning of Visual Object 
Categories. Curr Biol. 18, 597-601

B


